4- Second and Higher Order Linear Ordinary Differential Equations

Introduction

The general form of linear DE of order n may be written as:

$$
\begin{equation*}
a_{n} \frac{d^{n} y}{d x^{n}}+a_{n-1} \frac{d^{n-1} y}{d x^{n-1}}+\ldots \ldots \ldots+a_{1} \frac{d y}{d x}+a_{o} y=g(x), \quad\left(a_{n} \neq 0\right) \tag{1}
\end{equation*}
$$

where;
$a_{n}, a_{n-1}, \ldots . . a_{o}$ are called the coefficients for the DE and they are, in general, as functions of x, $g(x)$ is a function of x.

* If the coefficients $a_{n}, a_{n-1}, \ldots . . a_{o}$ are constants, then Eq.(1) is called linear DE with constant coefficients and if they are functions of x, then Eq.(1) is called linear DE with variable coefficients.
* If $g(x)=0$, then Eq.(1) is called homogeneous linear DE, and if $g(x) \neq 0$, then Eq.(1) is called non-homogeneous linear DE.

Differential operator (D-operator)

A second standard form of Eq.(1) is based on the following notations:

$$
\frac{d y}{d x}=D y, \quad \frac{d^{2} y}{d x^{2}}=D^{2} y, \quad \text { in general } \quad \frac{d^{n} y}{d x^{n}}=D^{n} y
$$

where D is called the differential operator.
Thus, Eq.(1) can now be written as:

$$
a_{n} D^{n} y+a_{n-1} D^{n-1} y+\ldots \ldots \ldots+a_{1} D y+a_{o} y=g(x),
$$

or $\quad\left(a_{n} D^{n}+a_{n-1} D^{n-1}+\ldots \ldots \ldots+a_{1} D+a_{o}\right) y=g(x)$.

Superposition principle

Let $y_{1}, y_{2}, \ldots, y_{n}$ be solutions of a linear DE of order n, then the linear combination:

$$
y=C_{1} y_{1}+C_{2} y_{2}+\ldots \ldots \ldots+C_{k} y_{k}, \quad k \leq n
$$

is also a solution, where $C_{1}, C_{2}, \ldots, C_{k}$ are arbitrary constants.

Linear dependence and independence

A set of n functions $y_{1}, y_{2}, \ldots ., y_{n}$ is said to be linearly dependent if there exist n constants $C_{1}, C_{2}, \ldots ., C_{n}$ (not all zero) such that:

$$
C_{1} y_{1}+C_{2} y_{2}+\ldots \ldots+C_{n} y_{n}=0, \quad \text { or } \quad \sum_{i=1}^{n} C_{i} y_{i}=0
$$

If no such constants can be found (i.e. do not exist), then the set of functions is said to be linearly independent. For example:

* For the functions $y_{1}=3 e^{2 x}, y_{2}=2 e^{2 x}$, and $y_{3}=e^{-x}$,
if we put $C_{1}=2, C_{2}=-3$, and $C_{3}=0$, then

$$
C_{1} y_{1}+C_{2} y_{2}+C_{3} y_{3}=2\left(3 e^{2 x}\right)+(-3)\left(2 e^{2 x}\right)+(0)\left(e^{-x}\right)=0 .
$$

Thus, y_{1}, y_{2}, and y_{3} are linearly dependent.

* For the functions $y_{1}=e^{-x}, y_{2}=e^{x}$, and $y_{3}=e^{3 x}$,

$$
C_{1} y_{1}+C_{2} y_{2}+C_{3} y_{3}=C_{1} e^{-x}+C_{2} e^{x}+C_{3} e^{3 x} \neq 0 .
$$

Thus, y_{1}, y_{2}, and y_{3} are linearly independent.

Wronskian determinants

It is not always easy to check the linear dependence of a given set of functions by searching for the value of the constants C_{i} which make $\sum_{i=1}^{n} C_{i} y_{i}=0$. For this purpose, Wronskian determinant may be used as an alternative method.

Let $y_{1}, y_{2}, \ldots, y_{n}$ are given functions to be checked for linear dependence, then the Wronskian determinant is defined as,

$$
w\left(y_{1}, y_{2}, \ldots ., y_{n}\right)=\left|\begin{array}{ccccc}
y_{1} & y_{2} & \cdot & \cdot & y_{n} \\
y_{1}^{\prime} & y_{2}^{\prime} & \cdot & \cdot & y_{n}^{\prime} \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot \\
y_{1}^{n-1} & y_{2}^{n-1} & . & . & y_{n}^{n-1}
\end{array}\right|
$$

If $w\left(y_{1}, y_{2}, \ldots ., y_{n}\right)=0$, then $y_{1}, y_{2}, \ldots ., y_{n}$ are linearly dependent.
If $w\left(y_{1}, y_{2}, \ldots, y_{n}\right) \neq 0$, then $y_{1}, y_{2}, \ldots ., y_{n}$ are linearly independent.
For example, the Wronskian determinant for the functions $y_{1}=2 x^{2}$ and $y_{2}=-3 x^{3}$ is,

$$
w\left(y_{1}, y_{2}\right)=\left|\begin{array}{ll}
y_{1} & y_{2} \\
y_{1}^{\prime} & y_{2}^{\prime}
\end{array}\right|=\left|\begin{array}{cc}
2 x^{2} & -3 x^{3} \\
4 x & -9 x^{2}
\end{array}\right|=\left[\left(2 x^{2}\right) \cdot\left(-9 x^{2}\right)\right]-\left[\left(-3 x^{3}\right) \cdot(4 x)\right]=-6 x^{4} .
$$

Since $w\left(y_{1}, y_{2}\right) \neq 0$, then y_{1} and y_{2} are linearly independent.

General solution of homogeneous linear DE

The general solution (complete solution) of any homogeneous linear DE of $n^{\text {th }}$ order will be the linear combination of n linearly independent solutions $\left(y_{1}, y_{2}, \ldots ., y_{n}\right)$ for which $w\left(y_{1}, y_{2}, \ldots ., y_{n}\right) \neq 0$. Each linearly independent solution contains one constant, therefore the general solution will be contain n constants.

Solution of homogeneous linear DE with constant coefficients

A second order homogeneous linear DE with constant coefficients can be written as:

$$
a \cdot \frac{d^{2} y}{d x^{2}}+b \cdot \frac{d y}{d x}+c \cdot y=0 \quad \text { or } \quad\left(a \cdot D^{2}+b \cdot D+c\right) y=0
$$

Let the solution is $y=e^{m x} \quad \Rightarrow \quad y^{\prime}=m e^{m x} \quad \Rightarrow \quad y^{\prime \prime}=m^{2} e^{m x}$,
Substituting in the DE gives:

$$
\begin{aligned}
& \text { a. }\left(m^{2} e^{m x}\right)+b \cdot\left(m e^{m x}\right)+c\left(e^{m x}\right)=0 \Rightarrow e^{m x}\left(a m^{2}+b \cdot m+c\right)=0 \\
& \text { but } e^{m x} \neq 0 \Rightarrow \therefore a m^{2}+b \cdot m+c=0 . \text { (Auxiliary or characteristic equation) }
\end{aligned}
$$

In practice it is obtained not by substituting $y=e^{m x}$ into the given DE and then simplifying, but rather by equating to zero the operational coefficient of y and then letting the symbol D plays the role of m, i.e. $a \cdot D^{2}+b \cdot D+c=0$.

$$
\therefore \quad m_{1,2}=\frac{-b \pm \sqrt{b^{2}-4 a c}}{2 a} .
$$

The roots m_{i} may be:
1- Real and unequal roots when $\left(b^{2}-4 a c>0\right)$,

$$
\begin{aligned}
& m_{1} \neq m_{2} \\
& \therefore y_{1}=e^{m_{1} x} \text { and } y_{2}=e^{m_{2} x} \\
& y=C_{1} y_{1}+C_{2} y_{2} \quad \Rightarrow \quad y=C_{1} e^{m_{1} x}+C_{2} e^{m_{2} x} .
\end{aligned}
$$

2- Real and equal roots when $\left(b^{2}-4 a c=0\right)$,

$$
\begin{aligned}
& m_{1}=m_{2}=m=-\frac{b}{2 a} \\
& \therefore y_{1}=y_{2}=e^{m x} \\
& y=C_{1} e^{m x}+C_{2} e^{m x}=C e^{m x}
\end{aligned}
$$

This could not be total solution because the DE is of the $2^{\text {nd }}$ order and there must be two constants of integration. Thus, the solution $y=C e^{m x}$ is considered as a part of the solution and the total solution will be assumed as,

$$
\begin{aligned}
& y=u(x) \cdot y_{1}, \text { where } y_{1}=e^{m x} . \\
& y^{\prime}=u \cdot y_{1}^{\prime}+y_{1} \cdot u^{\prime}, \\
& y^{\prime \prime}=u \cdot y_{1}^{\prime \prime}+y_{1}^{\prime} \cdot u^{\prime}+y_{1} \cdot u^{\prime \prime}+u^{\prime} \cdot y_{1}^{\prime}=u \cdot y_{1}^{\prime \prime}+2 u^{\prime} \cdot y_{1}^{\prime}+u^{\prime \prime} \cdot y_{1}
\end{aligned}
$$

Substituting in the DE gives

$$
\begin{aligned}
& a\left(u \cdot y_{1}^{\prime \prime}+2 u^{\prime} \cdot y_{1}^{\prime}+u^{\prime \prime} \cdot y_{1}\right)+b\left(u \cdot y_{1}^{\prime}+u^{\prime} \cdot y_{1}\right)+c\left(u \cdot y_{1}\right)=0, \\
& \left(a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1}\right) u+\left(2 a y_{1}^{\prime}+b y_{1}\right) u^{\prime}+a y_{1} u^{\prime \prime}=0 .
\end{aligned}
$$

But, $a y_{1}^{\prime \prime}+b y_{1}^{\prime}+c y_{1} \neq 0, \quad$ (since y_{1} is a solution)

$$
\begin{aligned}
& \text { and } 2 a y_{1}^{\prime}+b y_{1}=2 a\left(\frac{-b}{2 a} e^{\frac{-b}{2 a} x}\right)+b\left(e^{\frac{-b}{2 a} x}\right)=0, \\
& \therefore a y_{1} u^{\prime \prime}=0 . \quad \text { But, } \quad a \neq 0 \quad \text { and } y_{1} \neq 0, \\
& \therefore u^{\prime \prime}=0 \quad \Rightarrow \quad u^{\prime}=C_{1} \quad \Rightarrow \quad u=C_{1} x+C_{2} . \\
& \therefore y=u \cdot y_{1}=\left(C_{1} x+C_{2}\right) e^{m x} .
\end{aligned}
$$

3- Complex roots when $\left(b^{2}-4 a c<0\right)$,

$$
\begin{aligned}
& m_{1,2}=-\frac{b}{2 a} \pm\left(\frac{1}{2 a} \sqrt{4 a c-b^{2}}\right) i=\alpha \pm \beta i \\
& \therefore y_{1}=e^{(\alpha+\beta i) x} \text { and } y_{2}=e^{(\alpha-\beta i) x} \\
& \therefore y=A e^{(\alpha+\beta i) x}+B e^{(\alpha-\beta i) x} \Rightarrow y=e^{\alpha x}\left(A e^{\beta i x}+B e^{-\beta i x}\right)
\end{aligned}
$$

$$
\begin{aligned}
& \text { But, } e^{ \pm \beta i x}=\cos \beta x \pm(\sin \beta x) i, \quad \text { (Euler formula) } \\
& \therefore y=e^{\alpha x}[A\{\cos \beta x+(\sin \beta x) i\}+B\{\cos \beta x-(\sin \beta x) i\}], \\
& \Rightarrow y=e^{\alpha x}[(A+B) \cos \beta x+(A-B)(\sin \beta x) i] \\
& \Rightarrow y=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right)
\end{aligned}
$$

Example 1: Solve $\quad y^{\prime \prime}-3 y^{\prime}+2 y=0$.

Solution :

Using D-operator gives $D^{2} y-3 D y+2 y=0 \quad$ or $\quad\left(D^{2}-3 D+2\right) y=0$,

$$
\begin{align*}
& \therefore m^{2}-3 m+2=0, \\
& (m-1)(m-2)=0 \quad \Rightarrow \quad \text { Either } m-1=0 \Rightarrow m_{1}=1 \\
& \text { or } m-2=0 \Rightarrow m_{2}=2 \\
& \therefore y_{1}=e^{m^{1}}=e^{x} \quad \text { and } \quad y_{2}=e^{m^{2}}=e^{2 x} \\
& y=C_{1} y_{1}+C_{2} y_{2} \quad \Rightarrow \quad y=C_{1} e^{x}+C_{2} e^{2 x} \tag{G.S}
\end{align*}
$$

Example 2: Solve $\frac{d^{2} y}{d x^{2}}+6 \frac{d y}{d x}+9 y=0$.

Solution :

$$
\begin{align*}
& D^{2} y+6 D y+9 y=0 \quad \text { or } \quad\left(D^{2}+6 D+9\right) y=0, \\
& \therefore \quad m^{2}+6 m+9=0, \quad \text { (Auxiliary equation) } \\
& (m+3)(m+3)=0 \quad \Rightarrow \quad m_{1}=m_{2}=-3 \quad \Rightarrow \quad y_{1}=y_{2}=e^{-3 x}, \\
& \therefore \quad y=C_{1} e^{-3 x}+C_{2} x e^{-3 x} \quad \text { or } \quad y=\left(C_{1}+C_{2} x\right) e^{-3 x} . \tag{G.S}
\end{align*}
$$

Example 3: Solve $\quad y^{\prime \prime}-4 y^{\prime}+7 y=0$.
Solution :

$$
\begin{align*}
& \left(D^{2}-4 D+7\right) y=0 \quad \therefore \quad m^{2}-4 m+7=0, \quad \quad \text { (Auxiliary equation) } \\
& m_{1,2}=\frac{-(-4) \pm \sqrt{(-4)^{2}-4(1)(7)}}{2(1)}=\frac{4 \pm \sqrt{-12}}{2} \\
& =\frac{4 \pm \sqrt{12} i}{2}=2 \pm \sqrt{3} i, \quad(\alpha=2 \text { and } \beta=\sqrt{3}) \\
& y=e^{\alpha x}\left(C_{1} \cos \beta x+C_{2} \sin \beta x\right) \Rightarrow \quad y=e^{2 x}\left(C_{1} \cos \sqrt{3} x+C_{2} \sin \sqrt{3} x\right) \tag{G.S}
\end{align*}
$$

